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Abstract—The Quadrature Element Method (QEM) is a new concept in numerical methods which
was introduced only recently. A quadrilateral quadrature element is developed in the paper and
applied to the solution of two dimensional potential problems governed by Poisson or Laplace
equations. The results of three examples are in good agreement with the available solutions. It is
shown that the present quadrilateral quadrature element is very efficient and effective. Most sig-
nificantly, it can be emploved to solve differential equations of physical problems with irregular
geometry and complex boundary conditions. ¢ 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

It is well-known that analytical solutions to various differential equations are limited to
idealized situations wherein the physical domain of the problem is regular and the boundary
conditions are simple. To deal with many problems in practice of complicated boundary
conditions and irregular geometric shape, one has to resort to numerical methods such as
the Finite Difference Method (FDM) and the Finite Element Method (FEM) which have
become dominant numerical tools after decades of development. Usually, a large number
of discretized points are needed in these methods to attain high accuracy of results. Conse-
quently, the computational cost can often be prohibitive for these numerical methods.
Therefore, the effort to seek alternative numerical methods which are cost-saving and
efficient has never stopped. Since it was first introduced by Bellman and Casti (1971), the
Differential Quadrature Method (DQM) has found many applications (Jang et al., 1989)
in solving directly the governing equations of engineering and mathematical physics. It has
been found that the DQM is very efficient and accurate with relatively coarse mesh.
However, the major drawback it suffers is that the applications are restricted to simple
geometry and simple boundary conditions. To solve partial differential equations in curvi-
linear coordinate systems, efforts were made by Lam (1993) and subsequently by Shu ef al.
(1995). To extend the applicability of the DQM to irregular shapes, an attempt was also
made recently by Zhong (1996) to map the irregular physical domains into the normalized
unit square domain which is required by the DQM. In the analysis, a proper mathematical
transformation needs to be conducted: meanwhile, the Taylor expansion technique is
needed to remove the singularity which may appear in the inverse Jacobian matrix of the
transformation. Therefore, it 1s still difficult to apply the transformation technique when
the physical domain of a problem is arbitrary or its boundary conditions are complex.

To overcome the above-mentioned difficulty, the idea of “multi-domain differential
quadrature method” was contrived by Shu e al. (1991, 1992). Later, the same approach
was extended to slender structure components by Striz er al. (1994), and the Quadrature
Element Method (QEM) was coined. In the method, a physical domain is divided into
several subdomains, i.e., quadrature elements. On the inner points of each quadrature
element, the conventional DQM deriving from the strong form of the governing equations
1s applied while on the common boundary of two adjacent elements, enforcement of the
continuity of the function and its derivatives is required. In other words, the DQM can be
regarded as the particular case of QEM, i.e., the case with one quadrature element only.
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Thus, the merits of both the FEM and the DQM are inherited by the QEM. The global
coefficient matrix can be assembled by integrating the continuity conditions on each internal
boundary of two adjacent quadrature elements. The QEM has been successfully used to
analyze axisymmetric plates (Zhong, 1995) as well as structures made of slender members
(beams, trusses and frames) (Striz et a/., 1994). In this paper, a quadrilateral quadrature
element is developed and used to deal with two dimensional potential problems governed
by Poisson or Laplace equation. Three numerical examples are given to demonstrate the
feasibility and high accuracy of the quadrilateral quadrature element. More significantly, as
shown by the three examples, the present element vitalizes the newly developed quadrature
element concept and enables it to be applicable to various physical and engineering problems
of complicated boundary conditions and geometric shapes. It is also shown that the QEM
is an alternative powerful numerical tool to the FEM and the FDM.

2. DIFFERENTIAL QUADRATURE FORMULATION OF POTENTIAL PROBLEMS

The differential equation of a two dimensional potential problem is given as follows
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where x, y are space variables, Q is the physical domain, f(x, y) is a known function defined
in Q, u(x, y) the function to be solved. The general boundary condition can be expressed as

cu
au+a,—=4a, (x,el (2)
on

where I is the boundary of the domain, # is a known constant. Equation (2) becomes a
Dirichlet type boundary condition for a, = O while Neumann boundary condition cor-
responds to the case when a¢; = 0. According to the requirement of the QEM, the following
general transformation is introduced to map the physical domain (x, y) into the normalized
computational domain (£, ).
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where x and y are space variables defined on the physical domain of the problem of concern.
The Jacobian matrix of the transformation is

Xe Ve
1] = [ | ] (4)
X, ¥,

[ts inverse matrix is given as follows

é.\’ ’7 X . 1 )”, - ,]’y z
|:f ] ] =M= |7| [—; x/g]’ M = xep, — X, (5)
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where |J] is the determinant of the Jacobian matrix. Thus, the transformation of the first
order derivatives is
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Then, eqn (1) becomes
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The transformation needs to be conducted when derivative appears in boundary conditions.
Suppose the unit normal at a boundary is » = («, f§}, where « and f are the direction cosines
of n. The normal derivative in eqn (2) can then be written as

du Cu

du ox RRZS 1 du _Ou
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dy én

As discussed before, the QEM is based on the DQM, i.e., the partial derivatives of a
function with respect to a space variable at a given point is approximated by a weighted
linear sum of the function values at all discrete points in the quadrature element. The
application of differential quadrature approximation to eqn (7) leads to a set of linear
algebraic equations

N. N, N, N,
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+F<Z Wi, =F, (i=2,3,..., N:e—1; j=23,...,N,—1) (10)

m=1

where N, and N, are the number of grids in the two directions of the normalized domain
which can be different. They are usually taken as same N since it is easy for quadrature



2808 H. Zhong and Y. He

elements to match each other. W’ are the weighting coefficients related to the function
values. In this paper, the Lagrangian interpolation formula (Shu and Richards, 1993) is
used to determine the weighting coefficients. Its significant advantage is that it does not
require to solve simultaneous equations, since the weighting coefficients are expressed in
explicit forms. In addition, the weighting coefficients of high order derivatives have recurrent
relations with those of the lower order derivatives. The expressions of the weighting
coefficients in the & direction are as follows

MU () e
T T, 4 j
E—EIMWV(E,
Wf,l' _ (< 6’3 (/) ()
— wo, i=j
L /\flz./\'#i * ]
W=
m[W},’””W}-,—”——; T :|, i#j
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Wit = . (12)
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where
N
M) =T€-¢)
=1
N
MUE) = [l (&=&) k=12...N (13)

j=1ly#k

In the # direction, the formulas for the weighting coefficients are similar to the above.

Usually, the governing equations are employed at all inner grid points. The differential
quadrature approximation of eqn (2) results in a series of algebraic equations for the mesh
points on the four boundaries of the (&, ) domain, ie,{=0,{=1;y=0,yn=1. Fora
quadrature element with N x N grid points, there are (N —2) x (N —2) inner grid points at
which the governing equations are applied. On the four sides of an element, there are
4(N —1) grid points at which boundary conditions or continuity conditions are prescribed.
Values of u(&,n) and its derivatives will be obtained by solving the resulting set of sim-
ultaneous algebraic equations.

3. QUADRILATERAL QUADRATURE ELEMENT FOR POTENTIAL PROBLEMS

3.1. Element formulation

A quadrilateral element in the global coordinate system (x,y) and its unit square
counterpart in the local coordinate system (&, #) are shown in Fig. 1. The transformation
relations are given as follows.

4x,3) &

3(x;,0)
_“hjr A 40 3011
—%‘T 2(x,, %) BEEE

: 1t
) X (Trr] e
0 - 1(0,0) 2(1,0)

Fig. 1. A quadrilateral element and its unit square counterpart.
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X = Z N.x;
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The Jacobian matrix of the above transformation is given in eqn (4) in which
Xe= =X+ X0+ 0{X) —Xa+ X3 —Xy)
Ye= =)tV 00 — V2tV =)
X, = —x; +xs+ &0 — x4+ X3 —xy)
Yy = =it ra+iyi—ratyi—ya) (16)

From eqn (5), the element of the inverse Jacobian matrix can also be expressed as functions
of &, n,ie.,

So=wlll no= =yl &= —x /UL .= x /| (17)
where
Il = xop, = yex, (18)
Therefore,
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Differentiation of eqn (16) yields
Xee = Xy = Vee =Yy =0 (21

In combination of eqn (21), the differentiation of eqn (18) leads to
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where

Xey = X1 — X+ X3 — X4 (24)

Yoy =V1—YV2a+Vi—Ys (25)

Substitution of eqns (21)—(23) into (19) and (20) results in

e
(o I
In the same way, the following relations can be obtained.
Selle ety
[ I

thus, all the transformation functions for eqn (7), i.e., Fi(&, 1) (i=10,1,...,5) in eqn (8),
can be expressed as functions of ¢ and . It is worthwhile to point out that the above
mathematical manipulations are valid only when |J| # 0, requiring that any interior angle
of a quadrilateral quadrature element must be less than 180 degrees.

3.2, Treatment of boundary conditions

The boundary conditions of a quadrature element can be classified as two kinds:
internal boundary conditions and external boundary conditions. For the external boundary
conditions, the treatment has been discussed in the previous section. The compatibility
conditions of two adjacent elements (see Fig. 2) require that at each node of an internal
boundary

element(1

element(2)

X
Ie) -

Fig. 2. Internal boundary of two adjacent elements.
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where u'"(x, y), u?(x, y) are the functions defined in element 1 and element 2, respectively.
MN is the common side of the two elements n,, n, are the outward unit normal vectors on
MN for the two elements, respectively. Hence, n; = —n,. Let n, = (o, ), (i = 1,2), where
a,, B, are the direction cosines of n,, Combining with eqn (9), eqn (31) can also be rewritten
as

out” cu'?

[, B:11V1] 2 + (o2, B2114-] o =0 (32)
Tu ou'
5,;(“1; oy

where [J,]7", [J,] ' are the inverse Jacobian matrices of element 1 and element 2, respec-
tively. The differential quadrature format of eqn (32) can be implemented as what has been
done to the fourth and fifth derivative terms on the left-side of eqn (7). It is noteworthy
that the orientation of a quadrature element is arbitrary, indicating that at a node on the
internal boundary (¢, 4V} can be different from (£@, #®).

3.3, On equations at element corners

One of the technical details encountered in quadrature element analysis is the estab-
lishment of equations at the corners of a quadrature element. In the case of the second-
order equation as addressed in the paper, one equation is set up at each node in an element.
This is dictated by the need to have the same number of equations as unknowns. Generally,
there are three possibilities for an element corner which are depicted in Fig. 3. In case (a)
of Fig. 3, either of the two external boundary conditions (on AA, and AA,) can be specified
at the corner node A. Usually, the Dirichlet type boundary condition is chosen if there
exists, since it offers accurate value of the function to be solved. In case (b), either the
continuity condition (31) or the external boundary condition at A can be selected. As long
as the mesh in each element is dense enough, say N > 5, it should have no significant effect
on the accuracy of the solution. Case (c) in Fig. 3 represents the situation that A is an
interior node shared by a number of elements. Since only one equation is needed at a corner
point, the continuity condition on any one of the internal boundaries can be prescribed.
Experience indicates that the choice of corner condition can be made on the basis of
programming convenience and computational automation. Detailed discussion will be
given in the first example below.

A3
A B A
EB IB A;
IB
A2 AZ A2

(a) (b) (c)

Fig. 3. Three possibilities of a corner point : EI—external boundary ; IB—internal boundary.
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Fig. 4. Motz problem and the QEM.

4. EXAMPLES

4.1. Example 1 : The Motz problem

As a standard example with treatment of singularities involved in the solution of
Laplace equation, the Motz problem has been treated by a number of authors. The most
accurate results were obtained by Lefeber (1989) based on a series solution. The definition
of the Motz problem (see Fig. 4) is as follows

Viu=0 inQ (33)
=05 ony=0,-7<x<0
u=10 onx=70<yp<7
y=0, 0<x<g7
Ju
ﬁn=0 onix=—7, 0<y<7 34)
y=7, —=7<x<7

where n stands for the normal of the corresponding boundary. In this example, two
quadrature elements are adopted to discretize the whole domain (see Fig. 4), according to
the varying feature of the boundary conditions. The implementation of DQM in the whole
domain has proven to yield completely wrong results. The reason is that the boundary
condition on side y = 0 of the domain is inconsistent. In the QEM, the continuity of the
boundary condition on one side of an element is maintained.

Comparison of the QEM results for different mesh size and those of the best analytical
solution are shown in Fig. 5. It has been found that good results can be obtained by the
QEM with 120 Degrees of Freedom (DOF) (mesh 8 x 8 x2). When the mesh density
doubles, the solutions become spectacularly accurate, even for points near the singular
origin (0, 0).

To investigate the influence of selections of the corner condition on the solution of the
Motz problem, the following two schemes are adopted at the corners of the two elements:

Scheme 1. ua, ug, Uc, ip

AonAC B on BD Con AC D on BD E on DE FonBF
Neumann Continuity Neumann Continuity Neumann Neumann

Scheme 2. ). why, ue, up

A on AB Bon AB Con CD D on CD E on EF F on EF
Neumann Neumann Dirichlet Dirichlet Dirichlet Dirichlet
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Fig. 5. Solution of the Motz problem: —8 x 8 x 2. —15 x |5 x 2. —Lefeber, 1989.
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Table 1. Comparison of corner conditions

Mesh
Lefeber.
Ix3 Sx5 7x7 9x9 11x11 13x13 15x18 1989

U 0.61345 0.59701 0.59416 0.59306 0.59254 0.59224 0.59205 0.591360
W 0.59523  0.59567 0.59384 0.59294 0.59249 0.59221 0.59203

Up — Uy 0.01822 0.00134 0.00032 0.00012 0.00005 0.00003 0.00002
iy 0.73109 0.71263 0.70850 0.70687 0.70607 0.70560 0.70531 0.704320
Uy 0.78571  0.72385 0.71320 0.70944 0.70769 0.70673 0.70613

Ug— Uy 0.05462 0.01122 0.00470 0.00257 0.00162 0.00113 0.00082
ue 0.44538 0.48878 0.49531 0.49743 0.49837 0.49888 0.49918 0.5

g 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Ue— UE 0.05462 0.01122 0.00469 0.00257 0.00163 0.00112 0.00082
Uy 0.66387 0.59349 0.56898 0.55592 0.54765 0.54186 0.53752 0.5
up 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Up~Up 0.16387 0.09349 0.06898 0.05592 0.04765 0.04186 0.03752

It is noted that the four corners of element 1 are quite representative in the sense that
the pair of adjacent conditions for them are different from each other. Apart from the data
at the four corners of element 1, there is virtually no difference in the results between the
two schemes. The computed results on the four corners of element 1 are shown in Table 1.

It can be seen that the results from the two schemes are convergent. Apart from the
function value at the singular point D, the function value of the two schemes are very close
to each other with the refinement of mesh. As expected, the function value converges
somewhat slowly at singular point D. Still, satisfactory results can be obtained with the
increase of mesh density. At 11 x 11 x 2, the relative error of function at D is reduced to
less than 1%. Incidentally, function values at corners E and F are always exact due to the
no flux condition at the top and bottom sides of element 2.

4.2. Example 2: Torsion of a square shaft

For comparison, the torsion of a prismatic shaft with square cross section, which has
been treated using the DQM based on domain transformation (Zhong, 1996), is studied in
this example (see Fig. 6). It also serves as an tllustration that the quadrilateral element can
be used to deal with triangular domain problems. The compatibility condition of an elastic
prismatic shaft under torsion is the two dimensional Poisson equation (Timoshenko and
Goodier, 1970) given as follows

B(0,1) (L)

A(0,0) -

Fig. 6. Torsion of square shaft.
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| B4
1 Cca,1
B(0.1) (1/3,1) (1,1)
(2) (3)
0,2/3)
1 (1/2,1/2)
X
A(0,0) -

Fig. 7. Discretization of triangle.

'}2 —)2
COL P a6k (35)
x4y’

where G is the shear modulus, » the twist per unit length of the axis of the shaft, x and y
are the space variables defined on the cross-section. For convenience, Gk is taken as unity,
i.e., Gk = 1. So eqn (35) becomes

S =2 (36)

Due to the symmetry of the problem, only one-eighth of the domain is considered here.
The boundary conditions of the triangular domain are

¢ =0. atside BC;

0
(’2: =0, atsides ABand AC.

(37)

The domain is discretized into three quadrilateral elements (see Fig. 7). The selected
computational results are shown in Table 2. It can be seen that the torsional function at
the center of the cross-section ¢, and the maximum shear stress 7.5 converge quickly to
the exact solution with the refinement of the quadrature element mesh. To further study
the present quadrilateral quadrature element, the results of the QEM and those of the

Table 2. Convergence of QEM for example 1

Element mesh 3x3 4x4 5x35 6x6 Tx7 Exact solution
Total DOF 19 37 61 80 127

Pa 0.56103 0.60306 0.58884 0.58970 0.58923 0.58937
Err(%) 4.8 23 0.17 0.055 0.0085 -

Tyl —1.3099 —1.3550 —1.3493 —1.3510 —1.3503 —1.3506

Err(%) 3.0 0.326 0.096 0.030 0.022 —
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Fig. 8. Convergence comparison of DQM and QEM.

DQM for the same problem are compared in Fig. 8. Of the three available differential
quadrature solutions based on three different domain transformations (Zhong, 1996), the
selected two are the best and the worst, respectively. It can be observed that the present
quadrature solution converges more quickly than the available differential solution for the
torsional function at point A (see Fig. 8a). For the worst DQM solution, poor accuracy
and slow convergence rate were produced. In the calculation of maximum shear stress, the
available best differential quadrature transformation outperforms the present quadrature
element mesh (see Fig. 8b). Nevertheless, the convergence speed of the present quadrature
element solution is still satisfactory. With mere 19 DOF, the relative error of 7 .| is around
3%. In addition, the treatment of singularity involved in the differential quadrature analysis
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is avoided in the present quadrature element analysis. Moreover, in view of the uneven
performances of the differential quadrature solutions based on domain transformation, it
is difficult to acquire a reliable solution in the first place since the transformation for the
best differential quadrature is a priori unknown. Therefore, it may still be concluded that
the overall performance of QEM is still better than that of the conventional DQM on the
basis of domain transformation.

4.3. Example 3: Temperature distribution

In this example, the temperature distribution in an L-shaped living room (see Fig. 9)
is studied by the QEM. The walls of the living-room are considered to be perfectly isolated
so that the flux at the walls is zero, i.e., ¢T/dn = 0. The temperature of the window panes
is assumed to be 10°C and the temperature of the chimney at the upper end of the living
room is assumed to be 50°C. The temperature distribution 7" in the living room is the
function that satisfies these boundary conditions and the Laplace equation, i.e.,

-0 inQ (38)

The domain is discretized into five elements (see Fig. 9) to treat the complex boundary
conditions involved. The temperatures obtained by the QEM and the Boundary Element
Method (BEM) (Hartmann, 1989) are compared on some selected points (see Fig. 10). It
is noteworthy that the results of the BEM are not accurate enough and can only be used
for reference. For this reason, significant discrepancy occurs between the QEM solution
and the BEM solution on some grid points, especially the points on the boundary and near
the boundary. From this example, it is seen that satisfactory results can be achieved by the
QEM for a problem with complex geometry and complex boundary conditions, while the
DQM is incapable of dealing with this situation.

P 4m 4m
TOn— - B B
"=0 T=50 -~
4m %) O Ton—0 4m
v L /\
2m | T=10 4) P / \\ |
i \
K - N () 4m
@ \
2m 3 | \
1 | \
5 T=10
" }“———-—-_’_‘ N mrr | m n=9y0

Fig. 9. Temperature distribution in an L-shape domain.
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Fig. 10. Results for temperature distribution problem.

5. CONCLUDING REMARKS

The QEM offers an approach that is conceptually simple and mathematically straight-
forward since it combines the simplicity of the DQM and the versatility of the FEM. From
the foregoing comparison of results for three numerical examples, it is seen that the proposed
quadrilateral quadrature element is suitable for the solution of the two dimensional Poisson
and Laplace equations on triangular and some irregular physical domains. It generally
produces accurate results for comparable levels of computational effort. Even for problems
defined on a simple geometric domain, the QEM also demonstrates its flexibility in the
treatment of complex boundary conditions. The principal reason that the QEM may stand
out as a new powerful tool is its easy formulation and coding contrasting to the conventional
numerical tools such as the FEM and FDM.,

It has been demonstrated that the QEM has great advantages over the DQM. Firstly,
problems with complex geometry or complex boundary conditions can be perfectly solved,
while the DQM is inapplicable in this situation. Secondly, singularity involved in the
transformation of triangular domains can be avoided by the use of quadrilateral QEM
clements. Thirdly, the QEM is generally more efficient than the DQM. It can achieve
reliable and accurate results with less degrees of freedom.

Further work is clearly needed to extend the QEM to more practical problems. In
addition, more element forms in addition to the quadrilateral element need be constructed.
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